Persistent TrkA activity is necessary to maintain transcription in neuronally differentiated PC12 cells.
نویسندگان
چکیده
Neurotrophins are required for the differentiation and survival of several different neuronal subpopulations in the developing nervous system. The PC12 cell line responds to nerve growth factor (NGF) by withdrawing from the cell cycle and acquiring a sympathetic neuron-like phenotype. Previous studies have shown that the activation kinetics of the NGF receptor, TrkA, and downstream protein kinases appear rapid and seemingly transient after NGF treatment of naive PC12 cells. However, maintenance of the neuronal phenotype and survival of differentiated PC12 cells under serum-free conditions require constant NGF exposure. In this study we have addressed the mechanisms that NGF uses to maintain neuronal PC12 cells. We show that TrkA remains phosphorylated at a basal level throughout differentiation of the PC12 cells. The phospho-TrkA levels in the differentiated PC12 cells were diminished by both complete NGF withdrawal and pharmacological inhibition of Trk kinase activity. Intracellular sequestration of the majority of TrkA molecules (both phosphorylated and non-phosphorylated TrkA) and persistent dephosphorylation of the small pool of cell surface TrkA renders the persistent phospho-TrkA signal in the differentiated PC12 cells resistant to partial NGF withdrawal as well as exposure to additional NGF. NGF regulated both extracellular-regulated kinases 1/2 and Akt activity in the differentiated PC12 cells via sustained TrkA activity. Moreover, analysis of transcription using activating protein 1-, serum response element-, and cyclic AMP response element-Luc reporter constructs showed that NGF regulated these promoters through TrkA activity in differentiated PC12 cells. Interestingly, the initial response of the cyclic AMP response element promoter to NGF was delayed, becoming Trk-dependent well beyond the peaks in TrkA and downstream protein kinase signal transduction.
منابع مشابه
Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway
Hericium erinaceus is a culinary-medicinal mushroom used traditionally in Eastern Asia to improve memory. In this work, we investigated the neuroprotective and neuritogenic effects of the secondary metabolites isolated from the MeOH extract of cultured mycelium of H. erinaceus and the primary mechanisms involved. One new dihydropyridine compound (6) and one new natural product (2) together with...
متن کاملNGF signaling in PC12 cells: the cooperation of p75 with TrkA is needed for the activation of both mTORC2 and the PI3K signalling cascade
PC12-27, a PC12 clone characterized by high levels of the transcription repressor REST and by very low mTORC2 activity, had been shown to be unresponsive to NGF, possibly because of its lack of the specific TrkA receptor. The neurotrophin receptor repressed by high REST in PC12-27 cells, however, is shown now to be not TrkA, which is normal, but p75, whose expression is inhibited at the transcr...
متن کاملNGF signaling in PC12 cells: the cooperation of p75NTR with TrkA is needed for the activation of both mTORC2 and the PI3K signalling cascade
PC12-27, a PC12 clone characterized by high levels of the transcription repressor REST and by very low mTORC2 activity, had been shown to be unresponsive to NGF, possibly because of its lack of the specific TrkA receptor. The neurotrophin receptor repressed by high REST in PC12-27 cells, however, is shown now to be not TrkA, which is normal, but p75(NTR), whose expression is inhibited at the tr...
متن کاملRegucalcin confers resistance to amyloid‐β toxicity in neuronally differentiated PC12 cells
Amyloid-β (Aβ), a primary component of amyloid plaques, has been widely associated with the pathogenesis of Alzheimer's disease. The Ca2+-binding protein regucalcin (RGN) plays multiple roles in maintaining cell functions by regulating intracellular calcium homeostasis, various signaling pathways, and gene expression systems. Here, we investigated the functional role of RGN against Aβ-induced c...
متن کاملRabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells
Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 44 شماره
صفحات -
تاریخ انتشار 2003